97 research outputs found

    Mouse Sphingosine Kinase 1a Is Negatively Regulated through Conventional PKC-Dependent Phosphorylation at S373 Residue

    Get PDF
    Sphingosine kinase is a lipid kinase that converts sphingosine into sphingosine-1-phosphate, an important signaling molecule with intracellular and extracellular functions. Although diverse extracellular stimuli influence cellular sphingosine kinase activity, the molecular mechanisms underlying its regulation remain to be clarified. In this study, we investigated the phosphorylation-dependent regulation of mouse sphingosine kinase (mSK) isoforms 1 and 2. mSK1a was robustly phosphorylated in response to extracellular stimuli such as phorbol ester, whereas mSK2 exhibited a high basal level of phosphorylation in quiescent cells regardless of agonist stimulation. Interestingly, phorbol ester-induced phosphorylation of mSK1a correlated with suppression of its activity. Chemical inhibition of conventional PKCs (cPKCs) abolished mSK1a phosphorylation, while overexpression of PKC alpha, a cPKC isoform, potentiated the phosphorylation, in response to phorbol ester. Furthermore, an in vitro kinase assay showed that PKC alpha directly phosphorylated mSK1a. In addition, phosphopeptide mapping analysis determined that the S373 residue of mSK1a was the only site phosphorylated by cPKC. Interestingly, alanine substitution of S373 made mSK1a refractory to the inhibitory effect of phorbol esters, whereas glutamate substitution of the same residue resulted in a significant reduction in mSK1a activity, suggesting the significant role of this phosphorylation event. Taken together, we propose that mSK1a is negatively regulated through cPKC-dependent phosphorylation at S373 residueopen

    Regulation of cell survival by sphingosine-1-phosphate receptor S1P1 via reciprocal ERK-dependent suppression of bim and PI-3-kinase/protein kinase C-mediated upregulation of Mcl-1

    Get PDF
    Although the ability of bioactive lipid sphingosine-1-phosphate (S1P) to positively regulate anti-apoptotic/pro-survival responses by binding to S1P1 is well known, the molecular mechanisms remain unclear. Here we demonstrate that expression of S1P1 renders CCL39 lung fibroblasts resistant to apoptosis following growth factor withdrawal. Resistance to apoptosis was associated with attenuated accumulation of pro-apoptotic BH3-only protein Bim. However, although blockade of extracellular signal-regulated kinase (ERK) activation could reverse S1P1-mediated suppression of Bim accumulation, inhibition of caspase-3 cleavage was unaffected. Instead S1P1-mediated inhibition of caspase-3 cleavage was reversed by inhibition of phosphatidylinositol-3-kinase (PI3K) and protein kinase C (PKC), which had no effect on S1P1 regulation of Bim. However, S1P1 suppression of caspase-3 was associated with increased expression of anti-apoptotic protein Mcl-1, the expression of which was also reduced by inhibition of PI3K and PKC. A role for the induction of Mcl-1 in regulating endogenous S1P receptor-dependent pro-survival responses in human umbilical vein endothelial cells was confirmed using S1P receptor agonist FTY720-phosphate (FTY720P). FTY720P induced a transient accumulation of Mcl-1 that was associated with a delayed onset of caspase-3 cleavage following growth factor withdrawal, whereas Mcl-1 knockdown was sufficient to enhance caspase-3 cleavage even in the presence of FTY720P. Consistent with a pro-survival role of S1P1 in disease, analysis of tissue microarrays from ER+ breast cancer patients revealed a significant correlation between S1P1 expression and tumour cell survival. In these tumours, S1P1 expression and cancer cell survival were correlated with increased activation of ERK, but not the PI3K/PKB pathway. In summary, pro-survival/anti-apoptotic signalling from S1P1 is intimately linked to its ability to promote the accumulation of pro-survival protein Mcl-1 and downregulation of pro-apoptotic BH3-only protein Bim via distinct signalling pathways. However, the functional importance of each pathway is dependent on the specific cellular context

    Combination of RAD001 (everolimus) and docetaxel reduces prostate and breast cancer cell VEGF production and tumour vascularisation independently of sphingosine-kinase-1

    Get PDF
    Resistance to docetaxel is a key problem in current prostate and breast cancer management. We have recently discovered a new molecular mechanism of prostate cancer docetaxel chemoresistance mediated by the mammalian target of rapamycin (mTOR)/sphingosine-kinase-1 (SK1) pathway. Here we investigated the influence of this pathway on vascular endothelial growth factor (VEGF) production and tumour vascularisation in hormone resistant prostate and breast cancer models. Immunofluorescent staining of tumour sections from human oestrogen receptor (ER)-negative breast cancer patients showed a strong correlation between phosphorylated P70S6 kinase (mTOR downstream target), VEGF and SK1 protein expression. In hormone-insensitive prostate (PC3) and breast (MDA-MB-231 and BT-549) cancer cell lines the mTOR inhibitor RAD001 (everolimus) has significantly inhibited SK1 and VEGF expression, while low dose (5 nM) docetaxel had no significant effect. In these cell lines, SK1 overexpression slightly increased the basal levels of VEGF, but did not block the inhibitory effect of RAD001 on VEGF. In a human prostate xenograft model established in nude mice, RAD001 alone or in combination with docetaxel has suppressed tumour growth, VEGF expression and decreased tumour vasculature. Overall, our data demonstrate a new mechanism of an independent regulation of SK1 and VEGF by mTOR in hormone-insensitive prostate and breast cancers

    Sphingosine Kinase-1 Is Required for Toll Mediated β-Defensin 2 Induction in Human Oral Keratinocytes

    Get PDF
    Host defense against invading pathogens is triggered by various receptors including toll-like receptors (TLRs). Activation of TLRs is a pivotal step in the initiation of innate, inflammatory, and antimicrobial defense mechanisms. Human beta-defensin 2 (HBD-2) is a cationic antimicrobial peptide secreted upon gram-negative bacterial perturbation in many cells. Stimulation of various TLRs has been shown to induce HBD-2 in oral keratinocytes, yet the underlying cellular mechanisms of this induction are poorly understood.Here we demonstrate that HBD-2 induction is mediated by the Sphingosine kinase-1 (Sphk-1) and augmented by the inhibition of Glycogen Synthase Kinase-3beta (GSK-3beta) via the Phosphoinositide 3-kinase (PI3K) dependent pathway. HBD-2 secretion was dose dependently inhibited by a pharmacological inhibitor of Sphk-1. Interestingly, inhibition of GSK-3beta by SB 216763 or by RNA interference, augmented HBD-2 induction. Overexpression of Sphk-1 with concomitant inhibition of GSK-3beta enhanced the induction of beta-defensin-2 in oral keratinocytes. Ectopic expression of constitutively active GSK-3beta (S9A) abrogated HBD-2 whereas kinase inactive GSK-3beta (R85A) induced higher amounts of HBD-2.These data implicate Sphk-1 in HBD-2 regulation in oral keratinocytes which also involves the activation of PI3K, AKT, GSK-3beta and ERK 1/2. Thus we reveal the intricate relationship and pathways of toll-signaling molecules regulating HBD-2 which may have therapeutic potential

    Integration of gene expression data with prior knowledge for network analysis and validation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Reconstruction of protein-protein interaction or metabolic networks based on expression data often involves in silico predictions, while on the other hand, there are unspecific networks of in vivo interactions derived from knowledge bases.</p> <p>We analyze networks designed to come as close as possible to data measured in vivo, both with respect to the set of nodes which were taken to be expressed in experiment as well as with respect to the interactions between them which were taken from manually curated databases</p> <p>Results</p> <p>A signaling network derived from the TRANSPATH database and a metabolic network derived from KEGG LIGAND are each filtered onto expression data from breast cancer (SAGE) considering different levels of restrictiveness in edge and vertex selection.</p> <p>We perform several validation steps, in particular we define pathway over-representation tests based on refined null models to recover functional modules. The prominent role of the spindle checkpoint-related pathways in breast cancer is exhibited. High-ranking key nodes cluster in functional groups retrieved from literature. Results are consistent between several functional and topological analyses and between signaling and metabolic aspects.</p> <p>Conclusions</p> <p>This construction involved as a crucial step the passage to a mammalian protein identifier format as well as to a reaction-based semantics of metabolism. This yielded good connectivity but also led to the need to perform benchmark tests to exclude loss of essential information. Such validation, albeit tedious due to limitations of existing methods, turned out to be informative, and in particular provided biological insights as well as information on the degrees of coherence of the networks despite fragmentation of experimental data.</p> <p>Key node analysis exploited the networks for potentially interesting proteins in view of drug target prediction.</p

    Isocitrate Dehydrogenase of Helicobacter pylori Potentially Induces Humoral Immune Response in Subjects with Peptic Ulcer Disease and Gastritis

    Get PDF
    Background. H. pylori causes gastritis and peptic ulcers and is a risk factor for the development of gastric carcinoma. Many of the proteins such as urease, porins, flagellins and toxins such as lipo-polysaccharides have been identified as potential virulence factors which induce proinflammatory reaction. We report immunogenic potentials of isocitrate dehydrogenase (ICD), an important house keeping protein of H. pylori. Methodology/Principal Findings. Amino acid sequences of H. pylori ICD were subjected to in silico analysis for regions with predictably high antigenic indexes. Also, computational modelling of the H. pylori ICD as juxtaposed to the E. coli ICD was carried out to determine levels of structure similarity and the availability of surface exposed motifs, if any. The icd gene was cloned, expressed and purified to a very high homogeneity. Humoral response directed against H. pylori ICD was detected through an enzyme linked immunosorbent assay (ELISA) in 82 human subjects comprising of 58 patients with H. pylori associated gastritis or ulcer disease and 24 asymptomatic healthy controls. The H. pylori ICD elicited potentially high humoral immune response and revealed high antibody titers in sera corresponding to endoscopically-confirmed gastritis and ulcer disease subjects. However, urea-breath-test negative healthy control samples and asymptomatic control samples did not reveal any detectable immune responses. The ELISA for proinflammatory cytokine IL-8 did not exhibit any significant proinflammatory activity of ICD. Conclusions/Significance. ICD of H. pylori is an immunogen which interacts with the host immune system subsequent to a possible autolytic-release and thereby significantly elicits humoral responses in individuals with invasive H. pylori infection. However, ICD could not significantly stimulate IL8 induction in a cultured macrophage cell line (THP1) and therefore, may not be a notable proinflammatory agent

    S1P lyase regulates DNA damage responses through a novel sphingolipid feedback mechanism

    Get PDF
    The injurious consequences of ionizing radiation (IR) to normal human cells and the acquired radioresistance of cancer cells represent limitations to cancer radiotherapy. IR induces DNA damage response pathways that orchestrate cell cycle arrest, DNA repair or apoptosis such that irradiated cells are either repaired or eliminated. Concomitantly and independent of DNA damage, IR activates acid sphingomyelinase (ASMase), which generates ceramide, thereby promoting radiation-induced apoptosis. However, ceramide can also be metabolized to sphingosine-1-phosphate (S1P), which acts paradoxically as a radioprotectant. Thus, sphingolipid metabolism represents a radiosensitivity pivot point, a notion supported by genetic evidence in IR-resistant cancer cells. S1P lyase (SPL) catalyzes the irreversible degradation of S1P in the final step of sphingolipid metabolism. We show that SPL modulates the kinetics of DNA repair, speed of recovery from G2 cell cycle arrest and the extent of apoptosis after IR. SPL acts through a novel feedback mechanism that amplifies stress-induced ceramide accumulation, and downregulation/inhibition of either SPL or ASMase prevents premature cell cycle progression and mitotic death. Further, oral administration of an SPL inhibitor to mice prolonged their survival after exposure to a lethal dose of total body IR. Our findings reveal SPL to be a regulator of ASMase, the G2 checkpoint and DNA repair and a novel target for radioprotection

    Intracranial injection of dengue virus induces interferon stimulated genes and CD8(+) T cell infiltration by sphingosine kinase 1 independent pathways

    Get PDF
    We have previously reported that the absence of sphingosine kinase 1 (SK1) affects both dengue virus (DENV) infection and innate immune responses in vitro. Here we aimed to define SK1-dependancy of DENV-induced disease and the associated innate responses in vivo. The lack of a reliable mouse model with a fully competent interferon response for DENV infection is a challenge, and here we use an experimental model of DENV infection in the brain of immunocompetent mice. Intracranial injection of DENV-2 into C57BL/6 mice induced body weight loss and neurological symptoms which was associated with a high level of DENV RNA in the brain. Body weight loss and DENV RNA level tended to be greater in SK1-/- compared with wildtype (WT) mice. Brain infection with DENV-2 is associated with the induction of interferon-β (IFN-β) and IFN-stimulated gene (ISG) expression including viperin, Ifi27l2a, IRF7, and CXCL10 without any significant differences between WT and SK1-/- mice. The SK2 and sphingosine-1-phosphate (S1P) levels in the brain were unchanged by DENV infection or the lack of SK1. Histological analysis demonstrated the presence of a cellular infiltrate in DENV-infected brain with a significant increase in mRNA for CD8 but not CD4 suggesting this infiltrate is likely CD8+ but not CD4+ T-lymphocytes. This increase in T-cell infiltration was not affected by the lack of SK1. Overall, DENV-infection in the brain induces IFN and T-cell responses but does not influence the SK/S1P axis. In contrast to our observations in vitro, SK1 has no major influence on these responses following DENV-infection in the mouse brain.Wisam H. Al-Shujairi, Jennifer N. Clarke, Lorena T. Davies, Mohammed Alsharifi, Stuart M. Pitson, Jillian M. Car

    Disruption of Retinoic Acid Receptor Alpha Reveals the Growth Promoter Face of Retinoic Acid

    Get PDF
    Retinoic acid (RA), the bioactive derivative of Vitamin A, by epigenetically controlling transcription through the RA-receptors (RARs), exerts a potent antiproliferative effect on human cells. However, a number of studies show that RA can also promote cell survival and growth. In the course of one of our studies we observed that disruption of RA-receptor alpha, RARalpha, abrogates the RA-mediated growth-inhibitory effects and unmasks the growth-promoting face of RA (Ren et al., Mol. Cell. Biol., 2005, 25:10591). The objective of this study was to investigate whether RA can differentially govern cell growth, in the presence and absence of RARalpha, through differential regulation of the "rheostat" comprising ceramide (CER), the sphingolipid with growth-inhibitory activity, and sphingosine-1-phosphate (S1P), the sphingolipid with prosurvival activity.We found that functional inhibition of endogenous RARalpha in breast cancer cells by using either RARalpha specific antagonists or a dominant negative RARalpha mutant hampers on one hand the RA-induced upregulation of neutral sphingomyelinase (nSMase)-mediated CER synthesis, and on the other hand the RA-induced downregulation of sphingosine kinase 1, SK1, pivotal for S1P synthesis. In association with RA inability to regulate the sphingolipid rheostat, cells not only survive, but also grow more in response to RA both in vitro and in vivo. By combining genetic, pharmacological and biochemical approaches, we mechanistically demonstrated that RA-induced growth is, at least in part, due to non-RAR-mediated activation of the SK1-S1P signaling.In the presence of functional RARalpha, RA inhibits cell growth by concertedly, and inversely, modulating the CER and S1P synthetic pathways. In the absence of a functional RARalpha, RA-in a non-RAR-mediated fashion-promotes cell growth by activating the prosurvival S1P signaling. These two distinct, yet integrated processes apparently concur to the growth-promoter effects of RA

    In vivo and in silico determination of essential genes of Campylobacter jejuni

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the United Kingdom, the thermophilic <it>Campylobacter </it>species <it>C. jejuni </it>and <it>C. coli </it>are the most frequent causes of food-borne gastroenteritis in humans. While campylobacteriosis is usually a relatively mild infection, it has a significant public health and economic impact, and possible complications include reactive arthritis and the autoimmune diseases Guillain-Barré syndrome. The rapid developments in "omics" technologies have resulted in the availability of diverse datasets allowing predictions of metabolism and physiology of pathogenic micro-organisms. When combined, these datasets may allow for the identification of potential weaknesses that can be used for development of new antimicrobials to reduce or eliminate <it>C. jejuni </it>and <it>C. coli </it>from the food chain.</p> <p>Results</p> <p>A metabolic model of <it>C. jejuni </it>was constructed using the annotation of the NCTC 11168 genome sequence, a published model of the related bacterium <it>Helicobacter pylori</it>, and extensive literature mining. Using this model, we have used <it>in silico </it>Flux Balance Analysis (FBA) to determine key metabolic routes that are essential for generating energy and biomass, thus creating a list of genes potentially essential for growth under laboratory conditions. To complement this <it>in silico </it>approach, candidate essential genes have been determined using a whole genome transposon mutagenesis method. FBA and transposon mutagenesis (both this study and a published study) predict a similar number of essential genes (around 200). The analysis of the intersection between the three approaches highlights the shikimate pathway where genes are predicted to be essential by one or more method, and tend to be network hubs, based on a previously published <it>Campylobacter </it>protein-protein interaction network, and could therefore be targets for novel antimicrobial therapy.</p> <p>Conclusions</p> <p>We have constructed the first curated metabolic model for the food-borne pathogen <it>Campylobacter jejuni </it>and have presented the resulting metabolic insights. We have shown that the combination of <it>in silico </it>and <it>in vivo </it>approaches could point to non-redundant, indispensable genes associated with the well characterised shikimate pathway, and also genes of unknown function specific to <it>C. jejuni</it>, which are all potential novel <it>Campylobacter </it>intervention targets.</p
    corecore